Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds

نویسندگان

چکیده

<p style='text-indent:20px;'>Ensemble Kalman Inversion (EnKI) [<xref ref-type="bibr" rid="b23">23</xref>] and Ensemble Square Root Filter (EnSRF) rid="b36">36</xref>] are popular sampling methods for obtaining a target posterior distribution. They can be seem as one step (the analysis step) in the data assimilation method rid="b17">17</xref>,<xref rid="b3">3</xref>]. Despite their popularity, they are, however, not unbiased when forward map is nonlinear rid="b12">12</xref>,<xref rid="b16">16</xref>,<xref rid="b25">25</xref>]. Important Sampling (IS), on other hand, obtains at expense of large variance weights, leading to slow convergence high moments.</p><p style='text-indent:20px;'>We propose WEnKI WEnSRF, weighted versions EnKI EnSRF this paper. It follows same gradient flow that EnKI/EnSRF with weight corrections. Compared classical methods, new unbiased, compared IS, has bounded variance. Both properties will proved rigorously We further discuss stability underlying Fokker-Planck equation. This partially explains why EnKI, despite being inconsistent, performs well occasionally settings. Numerical evidence demonstrated end.</p>

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variance Reduced Ensemble Kalman Filtering

A number of algorithms to solve large-scale Kalman filtering problems have been introduced recently. The ensemble Kalman filter represents the probability density of the state estimate by a finite number of randomly generated system states. Another algorithm uses a singular value decomposition to select the leading eigenvectors of the covariance matrix of the state estimate and to approximate t...

متن کامل

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

An Ensemble Kalman Smoother for Nonlinear Dynamics

It is formally proved that the general smoother for nonlinear dynamics can be formulated as a sequential method, that is, observations can be assimilated sequentially during a forward integration. The general filter can be derived from the smoother and it is shown that the general smoother and filter solutions at the final time become identical, as is expected from linear theory. Then, a new sm...

متن کامل

Adaptive ensemble Kalman filtering of nonlinear systems

A necessary ingredient of an ensemble Kalman filter is covariance inflation [1], used to control filter divergence and compensate for model error. There is an ongoing search for inflation tunings that can be learned adaptively. Early in the development of Kalman filtering, Mehra [2] enabled adaptivity in the context of linear dynamics with white noise model errors by showing how to estimate the...

متن کامل

Data assimilation for nonlinear problems by ensemble Kalman filter with reparameterization

Article history: Owing to its simplicity and e Received 13 July 2006 Accepted 1 December 2008

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Foundations of data science

سال: 2021

ISSN: ['2639-8001']

DOI: https://doi.org/10.3934/fods.2020018